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ABSTRACT
This paper describes WalkCompass, a system that exploits
smartphone sensors to estimate the direction in which a user
is walking. We find that several smartphone localization sys-
tems in the recent past, including our own, make a simplify-
ing assumption that the user’s walking direction is known.
In trying to relax this assumption, we were not able to find
a generic solution from past work. While intuition suggests
that the walking direction should be detectable through the
accelerometer, in reality this direction gets blended into var-
ious other motion patterns during the act of walking, includ-
ing up and down bounce, side-to-side sway, swing of arms or
legs, etc. Moreover, the walking direction is in the phone’s
local coordinate system (e.g., along Y axis), and transla-
tion to global directions, such as 45� North, can be chal-
lenging when the compass is itself erroneous. WalkCompass
copes with these challenges and develops a stable technique
to estimate the user’s walking direction within a few steps.
Results drawn from 15 di↵erent environments demonstrate
median error of less than 8 degrees, across 6 di↵erent users,
3 surfaces, and 3 holding positions. While there is room for
improvement, we believe our current system can be imme-
diately useful to various applications centered around local-
ization and human activity recognition.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques;
C.5.3 [Computer System Implementation]: Portable
devices

General Terms
Design, Experimentation, Performance

Keywords
Heading direction; Force analysis; Mobile phones; Sensing;
Compass correction; Localization; Activity recognition; Ori-
entation; Magnetic field
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1. INTRODUCTION
Despite tremendous amount of academic research, indoor
localization is still struggling to come to mainstream. Based
on numerous discussions with industries and start-ups, we
are beginning to realize that much of the academic research
has optimized for “location accuracy”, while making sim-
plifying assumptions about other aspects of the end-to-end
system. Example assumptions include the availability of
indoor maps, availability of dense WiFi infrastructure, ori-
entation of the phone, known walking directions, etc. The
consistent feedback we have received is that relaxing these
assumptions is crucial at this point, perhaps even more than
pushing the boundaries of location accuracy. Driven by this
feedback, this paper concentrates on automatically sensing a
user’s global walking direction regardless of the orientation
of the phone.

If solved well, a user’s walking direction can o↵er benefits
beyond inertial localization. Stitching crowd-sourced sensor
data to infer detailed indoor maps is of increasing interest –
the user’s walking direction is a critical component in this.
Elevator companies are envisioning that future elevators will
be proactively fetched when the resident of a building begins
to walk towards the elevator [2] – the walking direction is
valuable here. Walking directions may also translate to the
user’s facing direction, enabling additional applications in
augmented reality, social activities, and context-awareness.
Of course, these benefits would be available only if walking
direction is estimated through a generic stand-alone mod-
ule, without relying on external information (such as maps,
locations, WiFi access points). Moreover, to be able to tell
the global walking direction (e.g., 45� North), the compass
errors need to be mitigated. WalkCompass is focused on
addressing these challenges.

It is natural to question the di�culty of solving this prob-
lem – one may ask why not estimate the walking direction
by projecting accelerometer signals to the horizontal plane?
While this is true in abstraction, the real situation is far
more complicated when the phone is held in di↵erent ori-
entations at various body positions. In pant pockets, for
example, the phone swings along with the leg, continuously
altering the phone’s local coordinate system; free-flowing
hands are similar. Users sway sideways in varying degrees
while taking each step, which becomes pronounced when
the phone is in the palm (e.g., when the user is checking
emails). Inherent sensor noise further pollutes the signal.
The precise walking direction is actually a micro-motion



that needs to be carefully identified, weighted, and averaged
over at least two steps.

Even if the user’s walking direction is successfully extracted
in the phone’s local coordinate system, translating it to
global directions, say 45� North East, is an additional chal-
lenge. This is because the global (magnetic) coordinate
system relies on the compass, which itself is susceptible to
ferromagnetic interference in many indoor environments.
All in all, the accelerometer signal that corresponds to the
direction of walking gets blended into various other motion
patterns that vary across users, environments, and phone
models. Solving it generically, we believe, is non-trivial.

The core intuitions in WalkCompass are simple and can
be explained in two parts. First, when a user walks, her
heel strikes the ground creating a distinct vibration that
resonates through the entire body. This vibration reflects
on the accelerometer data across all holding positions, even
when the user is holding the phone against her ears. Walk-
Compass uses this vibration as a reference, scans the signal
backwards, and extract specific samples from a time window
when the body’s movement is dominantly in the heading
direction. The signal is then processed with the gyroscope
data to compensate for instability of the phone’s coordinate
system, such as when the entire phone is swinging in the
pant pocket. This motion vector is then projected to the
plane orthogonal to gravity, and averaged over few steps to
converge upon the local walking direction.

The second problem pertains to translating the walking
direction to the global magnetic coordinate system, but for
this, the compass needs to be improved. WalkCompass’s
intuition is to treat the compass measurements as a signal,
shaped by the earth’s magnetic field, and by (the resultant
of) other interferers in the ambiance. While separating this
resultant interference is a di�cult problem, the opportunity
arises from walking. Since the phone moves in small steps,
it observes staggered snapshots of the same interference –
as if watching an object from di↵erent viewing angles –
thereby enabling the possibility of triangulation. Of course,
triangulation is possible only when the signal exhibits cer-
tain properties. WalkCompass exploits these properties to
correct the compass direction in certain locations, and uses
gyroscope based dead reckoning to track the walking direc-
tion between these locations.

Of course, the above is an over-simplification of our de-
signed algorithm – several constraints need to be accounted
for that are detailed in the paper. WalkCompass incorpo-
rates these algorithms into a functional system, with certain
optimization for human variations and holding positions.
Experiment results from 15 di↵erent settings show that the
main limitation of WalkCompass is in its time to conver-
gence. While an ideal system should be able to o↵er the
direction in 2 walking steps, WalkCompass sometimes re-
quires up to 5 steps. However, the direction accuracy is
promising, with the 75th percentile error being less than
12 degrees, in comparison to the compass which can be
26� even when held in the direction of walking. The accu-
racies scale across users, varying placements on the body,
and while walking over di↵erent surfaces such as concrete,
carpets, etc. Micro-benchmarks on magnetic interference

calculation also exhibit promising results, demonstrating
that the native compass errors can be appreciably reduced
(when the user is walking). While there is still room for im-
provement, we believe WalkCompass can already be useful
to other applications. We have demonstrated the system to
a few companies – an YouTube video of the demonstration
is posted here [3].

The main contributions of WalkCompass may be briefly
summarized as follows:

1. Analyzing the anatomy of walking patterns from the
perspective of smartphone sensors. This is performed
through a synchronized analysis of a walking video and
sensor readings, revealing meanings of each short seg-
ment of accelerometer readings. We believe our analy-
sis tool could benefit other smartphone-based activity
recognition systems.

2. Coping with magnetic interference in indoor environ-
ments. Designing various techniques to localize, quan-
tify, and isolate the interference, with certain inspira-
tions borrowed from noise cancellation techniques in
wireless communication.

3. Implementation of a functional prototype on multiple
models of Android phones. Experiment results from 15
di↵erent buildings indicating median error of 8� with
around 5 steps to achieve convergence.

2. FEW NATURAL QUESTIONS
(1) Despite substantial research on activity recogni-
tion and phone orientations, why is walking direc-
tion still an unsolved problem?
While we have been somewhat surprised as well, our litera-
ture survey revealed some insights into this question. Most
papers that have attempted this problem have done so in
the context of a broader application, and have leveraged
application-specific opportunities to resolve the challenges.
For instance, [9] analyzes human motion in indoor settings
and inherently requires a map of the place; authors leverage
the same map to estimate the user’s walking direction. Au-
thors in [30] perform localization using information about
the WiFi AP’s location, and use the same AP locations
to infer crude walking direction. [22, 19] assumes that the
phone’s initial orientation is known, and tracks the user’s
heading direction for a short time window after that. Zee
[28] is one of the localization papers that addresses the prob-
lem without other assumptions, but admit that the solution
is not stable and o↵ers ambiguity – they mention that using
maps can solve the problem at the expense of some latency.

A recent paper [5] attempts to solve the problem as a
stand-alone module but uses highly controlled conditions
for testing, namely, phone held in hand. MATLAB results
are presented for two path traces from outdoor environ-
ments. Moreover, the solution is only in the local coordinate
frame. Finally, several papers estimate the orientation of a
smartphone on the human body. Phone orientation, while
necessary, is insu�cient for translating a user’s walking di-
rection to a global coordinate system; moreover, detecting
the (local) walking direction is a separate problem. Know-
ing the orientation does not make this problem any easier.



(2) Why not use the sequence of user’s location to
compute walking direction?
In outdoor environments, this is true and trivial (assum-
ing GPS energy consumption is not an issue). For indoors,
however, walking direction is needed to compute location
in the first place. This reliance is growing stronger due to
two reasons. First, with more systems moving away from
manual war-driving to crowd-sourced approaches, it is im-
portant to understand the motion patterns of the crowd,
so that sensed data can be appropriately oriented. Second,
pedestrian dead reckoning is becoming increasingly popular
for localization due to its ability to track fine scale human
movements (otherwise di�cult with say WiFi or cell tower
signals). As a result, WalkCompass cannot assume the avail-
ability of the user’s location – the estimated walking direc-
tion will be needed to facilitate localization.

3. SYSTEM OVERVIEW
Figure 1 shows the key building blocks underlying Walk-
Compass, and their connections. We describe the flow of
operation here, and expand on the technical details in the
next sections.
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Figure 1: Flow of operations in WalkCompass. The
input is the phone’s sensor signals and the output is
the local and global walking directions.

The overall WalkCompass system has 3 main modules,
namely: (1) Human Walk Analysis (HWA), (2) Local Walk
Direction Estimator (LDE), and (3) Global Walk Direction
Estimator (GDE). HWA is a one-time analysis of human
walking patterns that helps us understand how di↵erent
forces act in di↵erent directions to keep the human body
stable during a walk. We observe how these forces are
manifested on the smartphone’s accelerometer in di↵erent
positions on the body, and use the insights to make key
design decisions in LDE. Specifically, we identify the exact
time-segment of the accelerometer signal that contains the
forward motion of the body-part (e.g., leg, hand, chest) near
which the phone is located.

The Local Walk Direction Estimator (LDE) receives the
raw accelerometer reading from the smartphone, and first

classifies the data to infer the phone’s location on the body.
The (time domain) accelerometer signal is then analyzed
and the appropriate segment extracted based on HWA’s
recommendations. This segment contains the forces in the
direction of the walk, but they are in 3D; moreover it is
polluted by a constantly-rotating coordinate system (say
when the upper leg swings while pivoted to the hips). The
gyroscope is engaged to compensate for this rotation, and
after some processing, the motion vector is projected to the
horizontal plane, orthogonal to gravity.

Now, this vector is only for one step of one leg, and not
necessarily the direction of the walk – humans extend their
feet in side-ward directions, called sway, and the walking
direction is an average of sway. The output from this aver-
aging operation yields the walking direction in the phone’s
local coordinate system. Observe that this implies that
with respect to the human’s walking direction, the phone’s
orientation is now known.

The local walking direction may su�ce for some appli-
cations; others need the global direction. In a perfect
world, the global walking direction would be the angle sub-
tended by the walking vector and the compass direction
(i.e., North). For instance, if the walking vector points in
the opposite direction of the phone’s compass, then the
global walking direction would be “South”. However, the
compass can be erroneous indoors due to ambient ferromag-
netic interferences – the GDE module is tasked to compute
the global walking direction despite these errors. To this
end, the GDE module operates on the frequency domain,
treating the sequence of compass readings as a digital signal.

As a person walks through indoor spaces, WalkCompass hy-
pothesizes that the e↵ect of nearby interferers would change
quicker over time, and would be captured by the high fre-
quency components in the compass signal. Filtering out the
high frequency components, the low frequency components
are expected to be from further away sources of interference,
adding an o↵set to the compass reading. GDE employs an
iterative algorithm that essentially attempts to localize this
far-away interferer. The key intuition is to decompose the
measured magnetic vector into the earth’s magnetic vector
(G) and the interference vector (I), and adjust the direc-
tion of G until all the I vectors intersect at the same point1.
This value of G is inferred to be the actual earth’s mag-
netic field. Of course, this triangulation may not be feasible
in all locations (e.g., where many strong and opposing in-
terfering sources are located far away). However, if some
locations o↵er feasible results, the global walking direction
can be computed there, and gyroscope-based tracking can
be used at other (in-between) locations. The subsequent sec-
tions expand on each of the techniques, followed by micro-
benchmark and full-scale system evaluation.

4. SYSTEM DESIGN
We describe the three modules, HWA, LDE, and GDE, for
the case where the phone is carried in the pant pocket. This
is actually the harder case, compared to the palm or in the

1Note that the magnitude of the earth’s magnetic vector at
a given location can be looked up in a database, so knowing
the user’s crude location, say the zip code, is adequate.
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Figure 3: Accelerometer data from human walking patterns with the smartphone placed in the pocket: (a)
Correlated jerks on all 3 axes on the accelerometer indicating a heel-strike on the ground. (b) The peak
detection algorithm detects the timing of the heel-strikes. (c) The gait cycle of human walk composed of 2
phases: the first 60% between two heel strikes is called the stance, and the next 40% is called the swing.

Figure 2: Matching video and accelerometer for la-
beling measured readings – the green circles are
tracked across video frames to compute their respec-
tive motion vectors, and later matched against the
vectors derived from the accelerometer.

swinging hand. At the end of this section, we will discuss
how the techniques can be generalized to other placements
with small modifications.

4.1 Human Walk Analysis (HWA)
Our goal in HWA is to be able to label the di↵erent parts
of an accelerometer reading with the corresponding micro-
actions that the user is performing at each time point.
The hope is that this analysis would reveal at least one
segment of the signal that is precisely along the walking
direction, and more importantly, is least polluted by other
micro-actions of the limbs. Of course, numerous studies,
especially in the domains of physical therapy and computer
animation, have analyzed the acceleration of various body
parts during the walk cycle [13, 14, 12]. Our study, how-
ever, is from the view of the smartphone sensor, placed at
di↵erent parts of the body, inside di↵erent outfits.

We set up a system in which 2 video cameras were placed
focusing various body parts of a walking person, say John.
John carried phones at multiple positions in the body – at
each of these locations, we attached a green marker to help
track the motion of the phone through the video frames. All

phones and the video cameras were time synchronized (to
sub-milliseconds) by shining a bright light on all their cam-
eras simultaneously. From the gathered videos, we tracked
each green marker over time and translated them into mo-
tion in the X, Y, and Z axes of the phone. We matched the
visually-computed motion with the accelerometer signal to
synchronize them as well as possible. This process helps in
matching the di↵erent ranges of motion (one in pixel space
and the other in sensor signal space), as well as for syn-
chronizing timing shifts due to fluctuations in accelerometer
sampling (details omitted in the interest of space). Figure
2 shows the outcome – we are now able to click on any
time window on the accelerometer signal and observe the
corresponding video clip.

We distill 2 useful findings from this experiment that we use
later to design the system. Here the limb that carries the
phone is referred to as the primary limb, and the other is
called secondary.

(1) Heel Strike is an Anchor Point
The maximum amplitude and fluctuation in the accelera-
tion, along all the 3 axes, occurs when the heel of the hu-
man strikes the ground. This holds true across all positions
on the body, including hand, backpack, pant pocket, shirt
pocket, etc. – only the magnitude of the jerk is di↵erent
in each of them. This general property serves as a valuable
signal marker – an anchor point – from which other stages
of the walk can be analyzed. To isolate this heel-strike with
high reliability, we add all the 3 dimensions of the accelerom-
eter signal, and take the signal envelope of this summation,
and pass through a simple peak detection algorithm (Figure
3a and 3b). The outputs of the algorithm are the precise
timings of the peaks.

(2) Swing Before Heel Strike
Between consecutive heel strikes, the legs go through two
main phases – a “stance” and a “swing” as shown in Figure
3(c). Stance is the phase when the upper body and leg move
forward while pivoted to the feet on the ground; swing is the
phase when the leg swings forward, pivoted to the hip, to
overtake the upper body. During the swing, the acceleration
is positive in the first half of the swing, and negative in the
second half (to bring the leg to a stop for a heel-strike).



Further, say the swing lasts from time t1 to t9 (Figure 4)
– the acceleration is maximum at time t3, then its zero at
time t5, and then the deceleration is maximum at time t7.
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Figure 4: The acceleration at various points of the
swing phase during the human walk cycle.

Our first approach was to extract the accelerometer data
around t3 and t7, reverse the sign for the data at t7, and
average them to derive the user’s walking direction. This
should cope well with accelerometer noise since hardware
noise is Gaussian with zero mean, hence should cancel well
upon averaging. However, we observed that the data around
t3 is polluted by the motions of the secondary leg and the
upper body. On the other hand, these secondary and upper
body motions are much less prevalent around time t7 – per-
haps because the body is trying to stabilize – making the
signal pristine. Hence, the Human Walk Analysis (HWA)
module prescribes the region around this t7 time point as
the signal containing the walking direction. Of course, this
is an approximation, since the above analysis assumes that
the swing is occurring uniformly in time. To be accurate,
we cannot assume that the mid point of the swing is at t5,
and the deceleration is maximum mid-way between t5 and
t9. The subsequent discussions in LDE will account for these
factors.

4.2 Local Walking Direction Estimator (LDE)
The LDE module receives a user’s accelerometer readings as
an input and runs the raw data through a position classifier
to detect where the phone is located on the body. Past work
has reliably solved this problem [29, 27] – we have borrowed
these solutions, and depending on the placement, apply
minor variants of LDE. For ease of explanation, we describe
LDE entirely for the case of pant pockets, and discuss the
variants at the end of the section.

Filtering: Assuming that the phone is in the pocket, the
data is then received by the Time Domain Filtering mod-
ule. This module computes the heal-strike peaks in the
signal, looks back from the peak to extract the segment
with maximum deceleration in the second half of the swing
(as described earlier in HWA). More precisely, the start of
the second half needs to be estimated first, for which Walk-
Compass looks for the change in the sign of acceleration
from positive to negative. Denote this time t

i

and the time
of next peak, t

j

. WalkCompass extracts the time point of
maximum deceleration within [t

i

, t

j

] – denote this as time

t

x

. To cope with accelerometer noise, typically Gaussian
with zero mean, WalkCompass extracts a short segment
around t

x

2. WalkCompass passes this segment through a
low pass filter to remove high frequency noise and poten-
tially other signal pollutants, and forwards the samples to
the gyroscope based dead reckoning module.

Dead Reckoning: The dead reckoning module fetches
the gyroscope readings at these exact time points (corre-
sponding to these signal samples) and observes the angular
rotation of the phone. By rotating back the phone’s coor-
dinate system to a reference time point (i.e., rotating the
phone in the reverse direction of the gyroscope readings),
the samples are now brought to a stable coordinate system.
The samples are now averaged, and the sign reversed. This
is the walking vector in 3D space.

Projection to Horizontal: The walking direction in 3D
space is then projected to the plane orthogonal to gravity,
also called the walk plane. The gravity vector is of course
not obvious from the raw accelerometer reading – we es-
timate the gravity vector by fusing the accelerometer and
gyroscope data, and applying the complementary filter [1].
WalkCompass projects the 3D walking direction into the
plane perpendicular to this computed gravity vector.

Sway Detection: In bipedal movement, each leg moves the
body in a slightly lateral direction – the walking direction is
actually a resultant of these two lateral motions. Thus, the
walking direction computed so far is slightly o↵set from the
actual walking direction. Further, the body also sways dur-
ing the walk, introducing additional forces unaligned to the
walking direction. Fortunately, all these movements are rea-
sonably symmetric with respect to the heading direction in
the horizontal plane. Therefore, the resultant of the primary
and secondary movements mitigates these lateral movements
and sway-induced errors. WalkCompass estimates the walk-
ing direction on the secondary leg using the same technique
as the primary, except that it uses a second smaller peak in
the accelerometer signal. These smaller peaks are indicative
of when the secondary heel strikes the ground. The final
resultant vector is passed through a median filter to remove
random jerks on the phone during the walk. The output of
the median filter is forwarded as the final output of LDE –
this is WalkCompass’s estimate of the walking direction in
the phone’s local coordinate system.

4.2.1 Coping with Phone Placement
Past work has developed classifiers that reliably discrimi-
nate the phone’s location on the body (palm, pant pocket,
swinging hands, etc.). The key technique is to observe the
energy density from acceleration, as well as the magnitude of
peaks during the walk. WalkCompass borrows this classifier
with a few minor adjustments – this is not our contribution.

Once the phone’s location is known, we apply a few mi-
nor modifications for the case when the phone is held in
the hand (both palm and swing). Specifically, instead of
summing the (x, y, z) accelerometer signals, we first com-
pute the variation along the gravity dimension (which is

2Taking a sample only at t

x

is susceptible to noise, instead
averaging over a few samples is expected to dampen the
noise.
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Figure 5: (a) Magnetic fluctuations in 3 indoor environments far higher than outdoors. (b) Heat map of
magnetic intensity across the entire corridor of a science laboratory. WalkCompass performs evaluation in
these settings.

not necessarily the z axis). The intuition is that the phone
bounces maximally along the gravity, and the HWA mod-
ule shows that the bounce-peaks are well correlated to the
heel strikes. Thus, once we anchor the accelerometer sig-
nal to these bounces (which are symmetric for both legs),
we apply the same segment extraction scheme. Fortunately,
the time point when the leg’s deceleration is maximum, is
also the time when the upper body is getting stabilized from
full-fledged forward motion. Selecting this time window is
e↵ective for hand-held phones. The case for shirt pockets is
slightly more di�cult, since the bounce is softer. Nonethe-
less, the bounce is still visible among the experiments we
performed (but may be less reliable for a soft walker, or a
child). We leave jacket pockets and bags to future work.

4.3 Global Direction Estimator (GDE)
Translating LDE’s output to the global coordinate system
entails 2 steps: (1) finding the true magnetic north in the
phone’s coordinate system, and (2) measuring the angle be-
tween the true magnetic north and LDE’s output. Step 2
is trivial, and in an ideal world, even step 1 is simply the
direction given by the smartphone’s compass reading. In re-
ality, however, the smartphone compass is heavily influenced
by magnetic interferers in the surroundings, especially in in-
door environments. Figure 5(a) shows the compass readings
from Android and iPhones in 4 di↵erent environments – an
outdoor sidewalk, a bio-engineering building, a computer sci-
ence building and a residential hall. In 3 of these 4 cases, the
compass deviates heavily from the actual walking direction.
Figure 5(b) shows a more detailed view – a heat map of the
magnetic intensity when the user walks with the phone in
a rectangular corridor. The intensity varies frequently and
ranges from 10 to 80 micro-tesla, indicating high magnetic
interference. As a result more than 95% of the corridor in-
curs errors greater than 23 degree o↵set. However, on the
outdoor path around the building, the magnetic intensity re-
mains close to its expected value, around 53 micro-tesla at
that location. In light of this, GDE concentrates on improv-
ing the compass, which is likely to benefit other applications
that utilize the native compass app.

Background on the Magnetic Compass
The Earth behaves like a giant magnet surrounded by lines
of magnetic flux [24]. A freely suspended magnetic needle
aligns itself with these lines and directs itself towards the

magnetic North of the Earth. Although these magnetic flux
lines converge at magnetic poles, they appear parallel in a
given (small) region, due to Earth’s large diameter. Thus,
when we walk with a smartphone in outdoor settings with
zero magnetic influence, we observe that the compass read-
ings – a 3D vector – are parallel to each other. However,
as we introduced an artificial interference near the phone3,
we observed that the measured compass vectors were dis-
torted. The distortions were in the direction of the resul-
tant of the Earth’s magnetic field (G) and the field caused
by the interferer (I) – shown in Figure 6(a). Now, with mul-
tiple interferers close to the phone, the measured compass
readings changed quickly since small displacements brought
the phone relatively closer to some interferers and further
from others. When the interferers were moved far away, the
magnitude of the interference reduced, and the fluctuations
in the readings naturally subsided. The measured compass
vector exhibited an o↵set from the actual magnetic north,
and this o↵set changed slowly over time (Figure 6(b)).

Figure 6: (a) Measured compass vector (R) is the
resultant of earth’s magnetic field (G) and the inter-
ference vector (I). (b) Compass vector R changing
slowly as user moves.

Intuition for Compass Correction
The above observations, although unsurprising, o↵ered us
an intuition. We recognized that when the compass is mov-
ing, the data it records is essentially multiple snapshots
of the magnetic interference from slightly changing angles.
Assuming the interferer is far away and stationary, the con-
secutive compass vectors should make small angles between
each other. Now, if the earth’s magnetic north vector was

3Interferers can be permanent magnets, called Hard Iron
interference, or any ferromagnetic material, called Soft Iron
interference.



Figure 7: (a) With incorrect G vectors, the I vectors
do not coincide. (b) Upon iterating over ✓, for some
value of G

✓

, the vectors coincide.

indeed known, then subtracting this vector from the com-
pass vectors, should have o↵ered the interference vectors,
and more importantly, these interference vectors should
have intersected at the location of the interferer. In reality,
since the earth’s magnetic north is not known, we asked:
what if we iterate over all possible vectors of magnetic north
until we find the interference vectors intersecting at one
location.

Figure 7 illustrates the idea graphically. Compass readings
[R1, R2, R3...] correspond to a moving user recording the
readings at times [t1, t2, t3...]. Now, since the direction of
G is not know, it is possible to assume an arbitrary direc-
tion, say G

✓

, and subtract from the R vectors, resulting in
interference vectors, I1, I2, and I3. If G

✓

is incorrect, the
interference vectors are not expected to intersect at a com-
mon point. However, when iterated for all values of ✓, the
correct value of G may be expected to o↵er a common point
of intersection, shown in Figure 7(b). If this intersection
indeed occurs, then we can select the corresponding G

✓

, and
use that as an estimate of the true magnetic north.

A natural question is: does the IMT algorithm assume only
one interferer in the ambiance? While it may appear to be
so, observe that the interference vector we estimate could
actually be the (vectorial) sum of all interferences in the
ambiance. This is modeled under the principle that di↵er-
ent force vectors can be linearly added and represented by a
single resultant vector. Of course, there is no reason to be-
lieve that these resultant vectors would originate or culmi-
nate at a single source (the point of intersection). However,
given that the spatial gaps between R1, R2, R3 is small (say,
three consecutive samples at 25 Hz), the resultant vectors
are likely to be o↵set by small amounts, and hence, could
be expected to meet at nearby points (a heuristic). The rest

of this section details this algorithm, called Iterative Mag-
netic Triangulation (IMT). Several pre-processing steps and
fine-tuning are necessary to make the algorithm generic and
robust to widely varying real-world conditions.

Iterative Magnetic Triangulation (IMT)
We describe 5 steps of the IMT algorithm next.

• Step 1: Vector Selection
The compass continuously provides a series of R

i

vectors,
however, not all these vectors are suitable for the IMT
algorithm. For example, when the user is not moving,
the compass reports unchanging magnetic vectors that are
parallel to each other. The interference vectors for those
samples will also be parallel, rendering triangulation infea-
sible. On the other hand, if the phone sways significantly
(on the axis perpendicular to the of walking direction), then
it breaks IMT’s model that the phone is dominantly mov-
ing along the walking direction. Finally, the triangulation
heuristic requires the interferers to be su�ciently far, so
that within a small time window, the magnitudes of the in-
terference vectors are almost equal. Recall that with nearby
interferers, the magnitudes change much quicker.

In view of these constraints, IMT treats the compass data
as a signal and first passes it through a low pass filter.
This eliminates the high frequency components correspond-
ing to nearby interferers, and leaves the influences of far
away and strong interferers. On this residue signal, IMT
opportunistically selects 3 consecutive vectors that are not
parallel, and whose projections on the sway-axis have negli-
gible variation. We find reasonable number of vector triplets
< R

i

, R

i+1, R

i+2 > that satisfy this criteria. Recall that
even if WalkCompass obtains the global walking direction
in a few spots, it can use the gyroscope to track the user in
between those spots (since the gyroscope is not a↵ected by
magnetic interference).

• Step 2: Iteration and Triangulation
IMT has a reasonable (though not precise) estimate of the
magnitude of G, based on the phone’s crude location (at
the granularity of, say, zip codes). This can be found from
the International Geomagnetic Reference Field database [6].
However, the direction of G is unknown and IMT iterates
over all possible values of ✓. Thus, for a given ✓, IMT
subtracts G

✓

from each of < R

i

, R

i+1, R

i+2 > to compute
< I

i

, I

i+1, I

i+2 >, and then observes how the interference
vectors intersect. When the intersection points are tightly
clustered (defined in more detail later), the corresponding
G

✓

is selected as the earth’s magnetic field. If multiple
values of ✓ present tight clusters, IMT chooses the values of
✓ that is closest to the compass reading. Finally, if no tight
clusters are found, IMT attempts the same operation on the
next valid vector triplet, or waits a few seconds to get fresh
data from the walking user.

• Step 3: Refining Magnitude of G
Unfortunately, we observed that in some cases, the rough
magnitude ofG (looked up from the Reference Field database)
provides unreliable results. This is due to inaccurate lo-
cations as well as unknown heights (i.e., a smartphone
on the 5th floor of a building may observe di↵erent ge-
omagnetic forces compared to sea level values from the
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corresponding
to minimum tightness at around 260.

database). Importantly, we find that when the magnitude
of G is erroneous, the locus of the intersection points of
< I

i

, I

i+1, I

i+2 >, computed from all values of ✓, follow
erratic shapes (Figure 8(a)). On the other hand, when the
magnitude of G is close to the correct value, this locus forms
a reasonably closed-formed shape, resembling a circle or an
ellipse (Figure 8(b)). In view of this, IMT checks the shape
of the locus and iteratively reduces the magnitude of G until
the locus forms the expected shape.

• Step 4: Picking Tight Intersection Clusters
Ideally, each pair in the inference vector triplet should in-
tersect at the same point. In practice, however, the points
of intersection form a cluster. IMT picks the value of ✓ for
which it finds the tightest cluster of intersections. We define
the “tightness” of a cluster as the sum of all pairs of points
in that cluster.

• Step 5: Final Global Walking Direction
Figure 8(c) shows the variation of tightness values for a full
iteration of G

✓

for a given vector triplet. IMT finds the
lowest point of this graph (i.e., the minimum value of tight-
ness), and the corresponding G

✓

(263� in this example) is
announced as the estimated geomagnetic north. Note that
this can also be used as the new compass output, improving
the inherent quality of the compass. Finally, WalkCompass
compares the local walking direction against this estimated
north, and outputs the global walking direction of the user.
Algorithm 1 presents the pseudo code for the IMT algorithm.

5. EVALUATION

5.1 Implementation and Methodology
WalkCompass has been implemented on Android, using the
Jellybeans version, and tested using a variety of Samsung
phones. The codebase has also been replicated on MAT-
LAB to test optimization modules o✏ine – the appropriate
optimization have are ported back into the phone. Figure
9 shows a screenshot with the gray cone(thicker) showing
the compass direction; the green cone(thinner) denotes the
user’s walking direction. The width of the cone is pro-
portional to the variance of walking direction – a useful
visualization for debugging in real conditions.

Algorithm 1: Pseudocode for the IMT algorithm

Data: continuous magnetometer data
Result: ✓

est

< R

i

, R

i+1, R

i+2 > = Vector Selection(filtered input);
r

G

= geomagnetic intensity;
while r

G

> threshold do
for ✓

G

 0� to 360� do
G

✓

= vector with magnitude r

G

and angle ✓

G

;
I

i

= R

i

�G

✓

;
I

i+1 = R

i+1 �G

✓

;
I

i+2 = R

i+2 �G

✓

;
< P

i

, P

i+1, P

i+2 > = pairwise intersections of
< I

i

, I

i+1, I

i+2 > ;
t

✓

= sum of all pairwise distances between P

i

,
P

i+1 and P

i+2. ;
Store < (t

✓

, ✓

G

) > in T ;
if Locus of < P

i

, P

i+1, Pi+2 > goes irregular
then

reduce r

G

exponentially ;
break ;

end

end
✓

est

= ✓

G

for which t

✓

is minimum in T ;
return ✓

est

;
end

WalkCompass experiments were performed with 6 users who
volunteered to walk with the phone in di↵erent environ-
ments, using varying holding positions. The environments
were mostly UIUC’s science and engineering buildings with
heavy magnetic influence – this subject’s WalkCompass to a
stronger test. For each test, we asked the users to walk along
established corridors – this is because we used the Google
satellite view to compute the global truth in walking direc-
tions. Some experiments were also performed in Wal-mart,
houses, and apartments, and the global truths were com-
puted similarly. We also walked along with the users noting
down when they changed the orientation of the phone, or
how they placed the phones in the pocket. We report re-
sults against the baseline of the phone’s compass.

5.2 Performance Results
We intend to concentrate on the following questions:
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Figure 10: CDF of WalkCompass’s LDE error with and without turns. (a) Phone held in the palm. (b)
Phone carried in the pant pocket. (c) Phone held in swinging arms.

Figure 9: (a) WalkCompass screenshot. (b) QR
code for WalkCompass demo.

• The accuracy of recognizing the walking direction in the
phone’s local coordinate system (i.e., results from out-
doors and some interference-free indoor environments) –
Figures 10, and 11. Speed of change detection, especially
after sharp turns (Figure 12).

• Coping with di↵erent holding positions (Figure 13), and
di↵erent orientations such as portraits to landscapes (Fig-
ure 14). Robustness when user is bear foot or wearing
shoes, and walking on various surfaces, such as carpet,
concrete, etc. (Figure 15).

• Accuracy of compass error correction with IMT – Figures
17, and 18. Its performance under various regimes of
magnetic interference (in labs,o�ce,house, and outdoor
settings) – Figures 19, and 20.

Accuracy of Local Walk Direction (LDE)
Figure 10 plots the CDF of local walking direction error,
estimated from all traces, across all users, and across all
environments. Figure 10(a) plots the case when the phone
is held in the palm (in the browsing position) – some are in
portrait, some landscape, and some users held the phone at
an angle to the walking direction. Figure 10(b) and (c) plot
the case of pant pocket and swinging hands, respectively.
WalkCompass’s error is computed as the di↵erence with the
true walking direction (computed manually for every trace
from Google’s satellite view). Since we are unsure about
the global truth near the turning positions (recall that users
may be making soft turns), we show the error distributions
including and excluding the turns. While excluding turns,
we have removed 6 steps at the each turn.

We could not develop a meaningful baseline scheme for
comparison, hence, we use the following. For the palm posi-
tion in Figure 10(a), we record the orientation of the phone
only when it is pointed in the direction of walking. We
smoothen this data through a low pass filter (as a way of
canceling out periodic perturbations) and plot its error CDF
– denoted “compass”. Evidently, even when the phone is
pointing in the forward direction, and the data smoothened,
the fluctuation is appreciable. Since we could not learn the
phone’s orientation in Figure 10(b) and (c), we do not plot
the compass data in these two graphs.

Evident from the graph, WalkCompass exhibits low median
error for a sizable fraction of the scenarios, and the errors
are well distributed on both sides of the walking direction.
This suggests that the heel-strike jerk manifests itself promi-
nently across all these phone postures. The performance
degrades when the hand swings – in fact, performance for
one of the 5 users is poor, significantly skewing the distri-
bution from the center. On close observation, we noticed
that this user’s hand-swings are embedded with several ro-
tational motions of the wrist, and even though they are
repetitive, WalkCompass is unable to cancel them out. For
all other cases, the performance is reasonably consistent.
For the palm, the median error is at ±5�, compared to
±23� for the phone’s native compass app (with low pass
filtering). For the pant pocket, the median is at ±3�, and
for the swinging-hand, ±8�.

Figure 11 breaks down the results for each individual user,
demonstrating that the LDE module is fairly robust to dif-
ferent walking patterns. In all these traces, the user walked
for around 20 steps on average before taking a turn, and has
taken around 25 turns in total. We show both the median
and the 75th percentile to reflect the robustness of the sys-
tem. When carried in the palm or pant pocket, the errors are
around 6�, except for one user who experiences around 20�

error. While this is not ideal, and leaves room for improve-
ment, we believe it is still useful for various applications.
An elevator company keen on automatically dispatching el-
evators based on approaching users finds such error margins
tolerable.

Direction Change Detection
Figure 12 zooms into the turning behavior of users – this is a
representative graph that plots the error when a user makes
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Figure 11: The median and 75th percentile of error per user without turns. Phone carried in (a) palm, (b)
pocket, (c) swinging-hand.

a 180� turn. This is the worst case behavior, and the graph
shows the time it takes to converge to the actual walking
direction. Evidently, the error decreases at a steady pace
with more number of steps after the turn, and converges at
around 5 or 6 steps. We believe these results are slightly
conservative since the ground truth is assumed to be the
intended direction in which the user is walking, and does
not account for how the user actually walked. WalkCompass
measures each of the micro-deviations the user makes at each
step, and is hence slightly penalized here.
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Figure 12: Error convergence after sharp turns.
Both median and 75th percentile error converge after
around 4 or 5 steps.

Toying with the Phone
Users orient their phones in various ways, perhaps changing
from a portrait to landscape for a video, raising the phone
for a phone call, or just tilting to check an email. Figure
13(a) shows the changes in the phone’s compass directions,
while WalkCompass’s estimated direction continues to point
in the user’s heading direction. Since LDE computes the
force in 3D, and takes the projection on to the horizontal
plane, the walking direction is estimated for all orientations
(even when the user is holding the phone against the ears for
a call). Figure 13(b) plots the distribution of errors across
all users and traces.

Figure 14(a) zooms in to the same results and shows a scatter
plot from many users toying with the phone. For easier
visualization, all the traces have been o↵set to a common
walking direction of 250�. Evidently, LDE copes consistently
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Figure 13: (a) Examples of traces in which users
frequently changes the orientation of the phone. (b)
CDF of error across all traces.

well with toying of phones and tracks the walking direction
correctly. Some points fall far from the 250� line, however,
observe that not too many points are consecutive, indicating
that the large errors do not persist for long. To provide a
sense of how much the phone was toyed with, Figure 14(b)
shows the angles to which the phone was pointing across all
the experiments.

Impact of Walking on Different Surfaces
Given that the success of LDE relies on correctly detect-
ing the accelerometer signatures during a walk, we evaluate
walking on various surfaces, with and without shoes. Users
in our experiments walked barefoot and with shoes, on dif-
ferent surfaces, namely, carpet, and tiled floors. Figure 15
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Figure 14: (a) Estimated heading for multiple users
when they randomly change the phone’s orientation.
(b) Tracking the angle in which the phone is pointing
to understand the extent of toying.

shows the median and 75th percentile errors for each of these
[footwear, surface] tuples. Observe that the errors are not
a↵ected by any specific surface – the heel strike is reasonably
robust and lends itself across all these scenarios.

Staircase and Backward Walk
We evaluate di↵erent modalities of walking, such as walk-
ing up and down staircases, and walking backwards. Figure
16(a) plots the CDF for staircases while Figure 16(b) shows
the performance when the user walks backwards. For both
scenarios, the phone was carried in di↵erent orientations and
positions in the body. As with regular walking, the per-
formance of a specific individual was relatively worst than
others, especially for the hand-swing. Otherwise, the per-
formance was stable. Finally, we note that in all cases, the
error of walking did not accumulate over time; even when
users walked for long duration and experienced some error
due to some jerks on the phones or other actions, a new heel-
strike would reset the errors. We believe this is a desirable
resilience property in any sensing system, and WalkCompass
possesses it. We have omitted these results in the interest
of space.

Global Walking Direction Estimation (GDE)
This section focuses on evaluating the accuracy of the global
walking direction estimator (GDE) module, and specifically
the Iterative Magnetic Triangulation (IMT) algorithm. To
test this algorithm in diverse conditions, we select 15 dif-
ferent locations from various regimes, including science and

carpet 
w/o shoe 

carpet 
w/ shoe 

tiles 
w/ shoe 

tiles 
w/o shoe 

Figure 15: Walking on di↵erent surfaces (carpet and
tiled floors) with and without shoes.

engineering laboratories, social places, houses, libraries, and
outdoors. We apply the IMT algorithm on the magnetome-
ter data and compare the results with the smartphone’s na-
tive compass app. Since IMT’s task is to only mitigate the
magnetic interference (and not estimate walking directions),
we hold the phone in the palm with the front of the phone
facing the walking direction. We carefully record the ground
truth from Google Satellite view.

5.2.1 Error distribution
Figure 17 plots the angle histogram across all traces, com-
paring IMT and the phone’s compass against ground truth.
Ideally this plot should have a spike only at 0�, which is the
ground truth. Evidently, the compass measurements scat-
ters around 60� on both sides of 0�, occasionally reaching
up to 90�. The long histogram bar around 25� suggest that
that’s the common case error. IMT, in contrast, produces
errors of 10� from the ground truth. Figure 18 shows the
cumulative distribution of absolute error for both IMT and
compass. The curve rises steeply for IMT and its value re-
mains less than 15� for 75% of the traces, whereas the raw
compass is at 37� for the same 75th percentile. The me-
dian error of IMT is around 7�, less than a third of compass
error. However, for very high magnetic interference, where
the compass error is more than 50�, the performance of IMT
degrades, although still remaining better than the compass.
Figure 19 compares the median error of IMT and native
compass for each of the 15 places. IMT is consistently half
or one-third of the compass. This is encouraging since even
outside WalkCompass, the techniques from this paper can
be useful in improving the compass app in phones, especially
in magnetic rich places where they are needed most.

5.2.2 Distribution of interval between effective triplets
Recall that IMT estimates the true compass direction on a
set of three magnetic vectors, called a triplet. Ideally, many
triplets should be available, so that WalkCompass can fre-
quently estimate the true North. It is also advantageous to
have the triplets evenly spread over the path of a walk – this
allows better interpolation (using the gyroscope) between
these correct points. Figure 20(a) shows the distribution of
the intervals, in seconds, between two consecutive triplets
found during the experiments. Although triplets tend to be
collocated, we have found triplets separated by around 7 sec-
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Figure 16: (a) The cumulative error distribution for
walking up and down staircases. (b) CDF of error
for walking backwards.

onds (i.e. every 7 steps) even at the 90th percentile. Figure
20(b) shows the number of triplets found in each individual
experiment. The density is su�cient to continuously and
reliably track the true geomagnetic North during the walk.

6. LIMITATIONS AND DISCUSSION
We discuss a few limitations and opportunities.

• Tail of Error Distribution: While median and 75th
percentile of accuracy is quite reliable with WalkCompass,
in certain settings the performance drops sharply. This is
particularly evident in areas where the compass error is ex-
tremely high – greater than 45� – and in other cases where
certain users vary the phone’s orientation while swinging
their arms. We do not have a strong handle on why these
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Figure 17: The angle histogram of (a) phone’s native
compass app, (b) IMT’s estimates.
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tween the compass and IMT.
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Figure 19: The median error comparison between
IMT and compass across all 15 places.

cases occur – deeper engineering and fine tuning is necessary
to cut-back on the tail of the error distribution.

• Need to Walk a Few Steps: The proposed IMT al-
gorithm cannot use any magnetometer data to infer the
magnetic north – only certain magnetometer snippets pro-
duce the correct answer. This indicates that the user would
have to walk a distance before WalkCompass can estimate
the magnetic North. While this may be tolerable for human
walking applications, additional research is needed if the
phone’s native compass has to be improved. Our ongoing
work is investigating methods to infer the true North from
any snippet of magnetometer data.

• Beyond Walking: While WalkCompass has not been
tested for other forms of human locomotion, such as wheel
chairs, skate-boards, biking, etc., we believe the core tech-
niques may still apply so long as there is a repetitive force in
the heading direction. Pushing the wheel for wheel chairs,
swinging the leg for skateboards, and rotation of the legs
during cycling, all seem to o↵er this opportunity. We plan
to test this in future.

• 3D WalkCompass: This paper investigates human walk-
ing direction on 2D, but we believe that the core techniques
can be scaled to 3D, albeit some additional complexity in
the IMT algorithm. We leave this to future work.

7. RELATED WORK
We discuss past work on detecting walking directions.
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Finding Heading Direction
Body-pasted sensors: Early work from anatomy analy-
sis, skeletal parsing, and computer animation have studied
the problem of walking direction using body-pasted sensors
[16, 32, 17]. Smartphone sensors are characterized with far
more degrees of freedom, given that it can be carried in
di↵erent clothing, di↵erent parts of the body, or handled in
unknown ways by the user. The challenges in coping with
the variations are fundamentally di↵erent.

Sensor dead reckoning: Attempts have been made to
solve the problem with smartphones, however, solutions
make certain assumptions. Specifically, [22, 19] assume that
the initial orientation of the phone is known, and the phone
is held stable in the hands. Authors in [20] infer orientation
by identifying specific gestures like texting, at which point
the phone is assumed to be in a known stable orientation.
In the outdoor setting, GPS can o↵er heading direction,
although with limited responsiveness; GPS may also falter
in Manhattan-like settings. WalkCompass relies only on the
direction of the forces on the smartphone, thereby eliminat-
ing reliance on other technologies.

Map based: The application of particle filters on floor-
plans is a popular technique [7, 25, 28, 18, 11]. However,
the approach fails in open spaces such as halls, airports,
libraries, atriums of hotels, etc. Moreover, the reliance of
floorplans restrict the applicability of these solutions. Zee
[28] proposes an interesting stand-alone approach to infer
the heading direction, essentially deriving hints from the

frequency response of the accelerometer. However, the tech-
nique alone is insu�cient and leaves an ambiguity between
two opposite directions. It relies on the map for disam-
biguation.

Vehicle dynamics: In essence, the analysis of vehicle dy-
namics using inertial sensors is also related to WalkCompass,
despite di↵erences in approach and methodology. Some re-
cent papers in this domain have leveraged sensor data from
smartphones to track the movement of vehicles for applica-
tions like driver detection [8], driving behavior analysis [15,
31, 10], and estimation of road conditions [23].

Correcting Compass Error
Geomagnetic fields and compass errors are well investigated
areas of study – many surveying organizations [6, 26] pre-
cisely record and tracks the behavior of global magnetic
fields and anomalies. For local magnetic distortions, some
mathematical models are available [4] to quantify the error
and apply corrective algorithms like Ellipsoid Fitting [21].
However, these approaches rely on calibrating the magnetic
field at various locations using specific devices and method-
ology. These techniques are therefore suited for one-time ap-
plications, say robotic motion planning or war-driving, but
does not scale to anywhere, anytime computing. WalkCom-
pass attempts to correct the compass in a calibration-free,
stand-alone manner.

8. CONCLUSION
This paper shows that the human’s walking direction can be
estimated from the smartphone’s inertial sensors, regardless
of the orientation of the phone on the body. The core tech-
niques are rooted in analyzing the relationship between hu-
man walking and its e↵ect on the phone, as well as methods
to estimate and cancel magnetic interference from the com-
pass data. We believe that WalkCompass can immediately
help a variety of apps that make assumptions on the user’s
walking direction. More importantly, we believe that with
some more e↵ort, the phone’s native compass can be dra-
matically improved, ultimately helping all applications that
rely on the compass.
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